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Introduction and Assumptions 1
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e
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Let (R,F,P) be a complete probability space with a right continuous filtra-

. ‘
,'.':‘ tion (Ft)t>0 and let (9, p20) be a countably Hilbert nuclear space with
‘;5”: ' ' its strong topological dual.

Consider the stochastic differential equation

) I ' +p!
% (1) dg A'E dt Ptgtdt-o-dwt

t t°t

AN £y = Y

B0y where: (Assumptions)

:l,'.e:‘ Al). - v is a ®'-valued Fo-measurable random variable such that for some r0> 0

2
E||Y|l_r0<°°~

%@’l i A2). - W= (wt)t>0 is a ¢'-valued Wiener process with covariance Q. This
implies that there exists q > 0 such that

. 1 ]
W. € C(]R+ ,<I>q) a.s.

A3). - TFor each t >0, At :d>d is a continuous linear operator that satisfies
the following properties:
a). - The map t-*At(b is continuous on ¢ for each ¢ ¢ .

b) is the generator of a two parameter semigroup (evolution

© T (Ac)czo

operator) {T(s,t) : 0ssst<wo} i.e.

A T(s,t) = T(s,t")T(t,t) 0<s<t'<t

T(t,t) I,

A

W

¢ :‘ -Q—T(s,t)d) T(s,t)A ¢ ¢ed, s<t (Forward equation), oo
428 dt t

¥

—q—’l‘(s,t)¢ -A T(s,t)d bped, s<t (Backward equation). ._____
w, ds 8 ades

i\

L) f et
35. | . e ror

2t RENRY

ﬂ_li L, -

" 'i.. ——eccm -
*l‘r‘. IR L ) SRR TN TS Y20 IS
> PRI e AR

L AOA v 1) A ; , WL HLAT W < LK 0
. \"-r"""’“s,‘\ NARLRCIEN ' ‘6'?“'> AP, 'I:_i".‘ ‘9"‘*"3‘": .:. .o.l>w 'C“'&‘:» i 56‘.- ) (‘a‘l‘c LA, . 't A o" L) ‘\.n.’:ﬁ‘ci. A '\- P U X ’ 7‘ N

|

A el O U NI TN AT AN S AR G P & 2 ~:{‘-_~'.‘.‘.‘. ‘,‘- \Q-.'-‘ *‘.\. ‘\‘-'r‘."v-' A SRR A Ly




and T(s,t) satisfies the following conditions:

c).

Q).

- For s<t T(s,t) :$+>?® is a continuous linear operator.

- lim T(s,t)¢=T(s,t0)¢ in the ¢-topology for each s fixed and

tfto

OSsStO, ded.

e). - lim T(s,t)¢=T(sO,t)¢ in the ¢-topology for each t fixed and

sfs0

OSSOSt, ¢ e .

. — For each T>0 and n>0

sup ||T(s,t)¢]| <= for all ¢ &.
0<s<t<T n

The next assumption concerns the perturbation operator Pt'

For each t =0 Pt :®+d is a continuous linear operator on ¢ and

there exists a family of seminorms {] [m :m20} on & defining an

equivalent topology on ¢ to that given by the Hilbertian norms

{

ln: n 2 0} such that the following three conditions hold:

a). - For each T> 0 there exists mT> 0 such that for each mZmT and

ssT, PS has a continuous linear extension from @lml to <I>|m|

(denoted also by Ps)’ where @lml is the ||| - |m—completion of

¢ and
.- is &
b) for each ¢ € & the map s->PS¢) from [0,T] to ¢|m| is |m|

continuous for mZmT ’

c). - sup P T(s,e)0ll] < RK(m,T) |l 0 ]]] for all ¢ €9 for m2my
Ossst<T  ° " "

and some constant K(m,T) > 0.

Remark 1. Condition A4(c) above can be obtained from A4(b) if we assume

that for each T>0 and m=20

sup |||'I‘(s,t:)c1)|||m < D(m,T)HIdDIHm for all ¢e ¢
0<sst<T

for some constant D(m,T) > 0.
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Remark 2. Some authors, as Kato (1976) and Tanabe (1975), consider two para-
meter semigroups T(s,t) on Banach or Hilbert spaces assuming that T(s,t) 1is
continuous on all the domain {(s,t) : 0<s<t<T}. This is a stronger condi-
tion than A3(d)-(f).

In order to solve the SDE (I) we first consider the solution of the un-~

perturbed SDE

for which it is possible to write a solution explicitly. This is done in
Section 1 and is an extension of the work by Kallianpur and Wolpert (1984)
and Christensen and Kallianpur (1985) who considered the case when At==A
t 20 is the generator of a strongly continuous semigroup Tt' In Section 2
we solve the SDE
7 ‘o1

Et = 6T(s,t) PSESds + nt
and show that the solution of the above SDE is also a solution of (I). In
Section 3 we extend the previous results to stochastic evolution equations
with a nuclear space valued martingale as a driving term. Section 4 contains
special cases and examples recently considered by Christensen and Kallianpur
(1985), Hitsuda and Mitoma (1985) and Mitoma (1985). It is important to ob-
serve that the last two examples of Section 4 are instances where the two
parameter evolution semigroup T(s,t), its generator At and the perturbator Pt
can all be defined directly on a countably Hilbertian nuclear space ¢ so as
to satisfy the above assumptions Al-A4. However, it is worth noting that, in
many cases, these operators may be more naturally defined on a Hilbert or

Banach space, as’e.g., in the Example 4.1 or the works by Dawson and Gorostiza

(1985), Kato (1976) and Tanabe (1975). In such cases the problem of finding
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a ¢ for which the assumptions concerning At and Pt are valid, has to be solved

first before our results can be applied.
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Solution of the Unperturbed SDE

In this section we solve the SDE

dEt = Aégtdt + th
(11)

50 =y
where for each t =0 A": :d'>9' is defined by the relation (AéF)[q)] =F[A¢p] for
all Fed', de d.
Definition 1. We say that the SDE(II) has a ¢'-valued solution & = (it)tZO if

the following four conditions hold:

a). - (€t) is Ft-adapted and ¢'-valued.

b). - £eC(R,; ¢") a.s.

O - £, [6] = ¥I[8] + [(E_[A9)ds +W_ [0] for all pe b a.s. t20.
d). - For each T>0

E( sup ]Et[¢]]2)<w for all ¢ ¢ 9.

0<t<T
Proposition 1. 1If £= (&;t)tZO is a solution of the SDE(II) then for each T>0
there exists nT>O and a version of £ (also denoted by &) such that

E?G C([OaT];Q' ) a.s.
n,
T
and

t
£ (6] = Y[o] + & [A ¢)ds + W [¢] for all ded, 0<t<T a.s.
t OS [ t

Proof: Given T > 0 define

G1(#) = EC sup_|£ [61]%) <=,
0<t<T

Then by condition (d) in Definition 1 GT(¢) <o for all ¢ ¢ ¢ and clearly GT
. e < , d
satisfies the conditions GT(¢1+¢2) < GT(¢1) +GT(¢>2) for ¢>l sze ¢ an

2 .
GT(a¢) = [a[GT(¢>) ace R, ded. Next since supOStsT|£t[¢]| is a lower




) semicontinuous function of ¢, by Fatou's Lemma GT((I)) is also a lower semi-
continuous function of ¢. Then by a Baire category argument there exist

N > >
) -ﬁ GT 0 and rT 0 such that

: E( sup I& [¢>]| T||q>|li for all ¢ e o.
K 0<t<T T

Let p,, > r,. such that the injection map ¢ <> ¢ is Hilbert-Schmidt and let
| T T Pr rT
L)

{ti)j}. c® be a CONS for & with dual basis {3} a CONS for &' . Then

. > PSS
w.:.. )] J_'L pT J J'l pT

BT sup lg 1015 s oy T lle lI2 <
j=1 0<t<T J=l J T

Define
[e o]

e
AN Q = {w: )} sup ]Et(w)[¢ ]|
- j=1 0<t<T

: ;_-. then P(QT) = 1. Next define

~ [ PE (6,18, weQ
R g = 4 3=t 33 T
3 |

Cae 0 weé R
fotn Hence, § € ®' a.s. and § (wW){¢] =€ (w)[¢] for all $ed® 0=<t<T and we Q_.

t Pr t t T
Moreover by the dominated convergence theorem if t,t

T

e [0,T]

0

e
l'.' (‘.‘
[

- i

| B
¥

Al

lin [ (g @6,] - £ <w)[¢j1>2

L g @)-£, ]|
0 T t>t, j=1 0

>
tto

A% o
oo I lim (5 We,] - &, [q>j])2 =

N y j=1 t‘*to 0

v Thus E,T

u W .

€ C([O’T];¢I'7 ) a.s. and therefore
T

n o ~
e P(w: NT(w) : sup ||§tH_ <o) =

0<t<T T
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2 ~
4 From now on we will write £t instead of e:t.
§ Next for we QT and 0<t<T, for ¢ ¢ ¢ define
R t
g Y (W[¢] = £€S<w>[AS¢]ds.
‘o

: T

A" We shall show that Y, (w) € C([O,T];@tn ) for some mT> 0. Suppressing w in the

T

N ' writing we have that

: t

; I _[o1] < N, [lla ol ds

. t To s P

l.

Then using the continuity of the map s->AS¢> for all ¢ ¢ ¢, by a Baire category

)

] argument there exist 6,},>0 and mT>pT such that

[\

t

2 2 2
A sup [Y [6117 < )erlloll.  for all peeo.
0<t<T T

¥

‘ Then Y (w) € ®' for all 0<t<T wef . Next let £_>m_ be such that the
R t mT T T T
N

~ injection map ¢,“=¢ is Hilbert~Schmidt and let {e.}. < be a CONS for
s ['T m, jij=zl
. . ~ '

o ¢, with dual basis {ej }jzl a CONS for ¢p . Then

. T T

. o =3

. 2 2 2

K. I osup v led|” = oo I lledly <=

: j=1 0<t<T J j=1 3 M7

Next from the inequality |Y _[¢]]| <N ftHA ¢|| ds we have that Y _[¢] is a
t T/0" s P t
continuous function of t on 0<t<T for each ¢e ¢. Then by the dominated

convergence theorem

oo
. 2 Z v _ 2 -
; lim ||Yt Y, H—K lim Z (Yt[ej] Y, [ej]) 0 t,e e {o,T]
t>t 0 T t+t,. j=1 0
0 0
. T ,
N i.e. Y (w) eC([O,T];‘Dz ) we ..
T
T
Then we have shown that ISA;ESdse C([O,T];<I>£'i ) a.s. for some £T> 0. Hence
T
N
\ . -
‘ taking o, max(ro,q,p,r,f.,r) we have that
n,
k)
_\
Y
M
<
K
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t
z, =Y+ [AlZ ds +W_ e C([0,T]50) ) a.s.

t 0

Hence by conditions (b) and (c¢) in Definition 1 P(Zt=£t 0<t<T)=1 and

the proof of the proposition is complete. Q.E.D.

Remark 3. The following sufficient condition implies condition (d) in Defini-

tion 1: For each T> 0

T
Ef(5 [A dJ])st <  for all e Q.
o s s

Theorem 1. Under assumptions Al-A3 the SDE(II) has a unique $'-valued solu-

tion £ = (E',t) given by

t
(1.1) £, = T'(0,0)Y + gT'(s,t)A!';WSds +Wo 20
i.e.
t
(1.2) £.[0] = v[T(0,t)9] + IWS[AST(s,tmds + W (8]  for all ¢ o.
0

Furthermore, for each T> 0 there exists £T> 0 such that

£ e c([0,T130) ) a.s.
T

and

EC sup Jlg 12, ) <=
T

0<t<T




A

Ey %

For the proof of Theorem 1 we will need the following two lemmas.
Lemma 1. For each t 20 let Bt :9>® be a continuous linear operator and sup-
pose that the map t->th> is continuous in the ¢-topology. Let
{T(s,t) : 0<s<t<®} be a two parameter semigroup on ¢.
a). - Under assumption A3(c)-(e) the map s+BST(s,t)¢) is continuous in the
9-topology for 0<s<t<wo, ded. Furthermore for p20 and t>0

sup ||B T(s,t)ub]] < for all de O,
0<sst s P

b). - If in addition we assume A3(f) then for each p>0 and T> 0 there exist
r=r(B,T,p) >0 and D=D(B,T,p) >0 such that

sup “BST(s,t)d)Hp < D”q‘)”r for all ¢« .

0<s<t<T
Proof: a). - Since for each t =0 B, : ¢+ is continuous then for each p>0
the function gt(dD) = HBthHp is a continuous function on ¢ and hence a lower

semicontinuous function. Thus if t =0

G (¢) = sup ||B_¢] bed
t OSSStH s lp

is also a lower semicontinuous function. Moreover since the mapping s*BS$
is continuous then Gt(¢>) <o for all ¢e¢ ® and clearly Gt(¢l+¢>2) SGt(jl) + (:2),
Gt(a”pl) = lafGt(qbz) for Ge R, (bl,sze ¢. Then by a Baire category argument

Gt(q‘.)) is a continuous function of ¢ and there exist 8t> 0 and rt >0 such that

G(%) set|[¢>|[rt for all ¢ e 9.

Hence for each s<t and ¢

lllasqallpsetl|¢>||rt for all ¢ped

and therefore for any Sl< t and 32< t

HBS(T(sl,:m—T(sz,t)q;)np < etHT(sl,t)q;-T(sz,:mlrt for all




10
;
; Then if sfs0 OSsSsost
»
K
- < - + - 4

‘ |B T(s,t)9 BSOT<so,t)q>Hp lB_(T(s,t)¢ T(so,t)da)llp 1B T(sy,t)0 Bsouso,mﬂp
k)
K)
) < etHT(s,t)cp—T(so,t)d)Hrt + ||Bsr(so,c)¢-BSOT(sO,thp
O\

which goes to zero as s+t Sg° the first term by assumption (A3)(e) and the second
E\; -
_ one since s-*Bstp is a continuous mapping.
+f]
4‘:' Hence the mapping s*BST(s,t)cb is continuous in the ®-topology on
X

O<s<t<» and ¢ e ¢ and therefore for n20 and t =20
N
':‘ sup ||B T(s,t)¢]] <=
? Ossst S
i which proves (a).
» b). - From (a) we show that
4 -
2 G.(¢) = sup ||B ¢o||_<o_]|o]l for all ¢ ¢ @
A
: T osest ¢ P T T
i.e. < £ <t<T.

i.e HBS¢HP<9T”¢”rT or all ¢ed 0<t<T
i .
N. Then for 0<ss<tsT
-
3 ”BST(s,t)tb”p < GTHT(s,t)d)HrT for all ¢ e O.
" Py
}' Next defining VT((b) = suPOSsStST”T(S’t)d’”rT by A3(f) VT(¢) <o, Then since
N . . . -

vT(q:) is lower semicontinuous, VT(¢1+¢2) SVT(¢1)+VT(¢2) and VT(anl)
1
! |a|VT(<bl) ae R, ¢l,¢>2e ¢, by a Baire category argument there exists
'5 8! >0 and r! >0 such that
4 Vo (9) < e%||¢>||r:r for all e @
. i.e.
{
K., sup “BST(S’t)‘b“p < DT”(b“rv
4 0$s<tsT T
2 Q.E.D.
"
Wy
lﬁ
|
)
"
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Lemma 2. Assume A3(a)-(f) and let B be a continuous linear operator from ¢

to &. Then for each Fe¢ d' and O0<uc<t

t

a). - F[BT(u,t)$] = F[Bo] + fF[BT(u,s)ASMds for all ¢ ¢
u
t

b). - F[BT(u,t)d] = F[B¢] + fF[BAST(s,t)q'ﬂds for all ¢ e &.
u

Proof: From A3(b)~(d) we have

Lr(u,000 = Lim TSI 10,00
€v0

- 1in L2 TESO0 TS0 - 1y, 94
40

d = o0
a—ST(u,s)tb—T(u,s)AS(b ped O0<Sus<sc<o,

Let rF> 0 be such that HFII_r <o, Then since B:$+¢ is continuous there
F

exist ©O= 6B >0 and r = rB >0 such that

HBlpHrF < GBHerB for all pe d.

Hence using the above inequality, Lemma 1(b) and A3 we have that for T> 0 and
0<u<s<T

HBT(u,s)AstbllrF < eB||T(u,s)Asq>||rB < BBD||¢>||r for all ¢ @

for some r > 0. Then

sup |F[BT(u,s)A ¢]]| < HFH_r sup HBT(u,s)AScDHr < o for all ¢e &
0suss<T s F 0<us<ssT F

and F[BT(u,s)As¢] is integrable on u<s<T, T>0.

Hence using the Forward equation, since F and B are continuous on ¢

t t
fF[BT(u,s)Asts = J'F[}}dis'l’(u,s)tblds
u u

t
= f‘a%F[BT(U,S)¢]ds = F[BT(u,t)$] - F[BT(u,u)d)
u

"J\*A’ ._ ',*p \_, , J'n"""' '\‘1-'\‘.)4.'\-, _/-" N "h'yl."r -v-\.w\‘}".;n) .\ '.'p.vq - -'-‘-'
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B
A 12
“::.:l ¢
B
B e FIBT(u,t)9] = FIBO] + [FIBT(u,s)A 0lds
:"::‘ u s
'!_3’
[O
which proves (a).
L PN
0
"\E b). - As in (a) we obtain the Backward equation
: d
¥ — = =
UL dsT(S,t)d) AST(S,t)(b
LR M
:'t,‘ Taking BS= BAs in Lemma l(a) we have that
i
e sup ||BAgT(s,t)d|| <
et r
ot 0<sst F
,p;;:e and hence as in (a) IF[BAST(s,t)d)]I is integrable on 0<u<s<t. Then using
K
)
z:, ) the Backward equation and the fact that B and F are continuous we obtain that
é::"e“
s t t t
[F(BA_T(s,t)01ds = ~[F[BST(s,t)01ds = ~[<F[BT(s,t)01ds = ~F[BY] + FIBT(u,t)0]
u u u
g LY
3 .
z 2 l.e. t
Y F[BT(u,t)$] = F[B¢] + [F[BA T(s,t)¢lds.
vy S
u Q.E.D.
.
j':t.:' Proof of Theorem 1. Let
(' 4
B Q = {weQ:W.) e C(R, ;0N n{w: ||yw)]| <}
) 1 +° q -r
O] 0
o then by Al and A2 P(Ql) = 1.
K
»‘:‘).: Let we Ql (we will suppress w when there is no conflict) and let T > 0.
"
I,. 1t
Intl!, Step 1. We shall prove that for each 0<t<T and we Ql the map
;!.'1' t
::;é ¢ > Yt(w)[¢] = fws(w)[AsT(s,t)¢]ds
c’é; 0
‘ »
O e
is a continuous linear map, i.e. Yt(w) ed'.
U/
e If we show that the integral is finite then clearly the map Yt is linear.
Y
it Define
3
a:—:'i’ t
" K (®) = f”AsT(s,t)d)qus ded.
% °
N
o
s
A

e L LA L L 8 L S L LA L LA L 2 N
1’,"-;( UG S ",.'(* “.'\{l\ ) ‘\;_;»_.. . Cof "".':' 1."'[. - L -\: e ‘n;' v
NN (o L . DL £ £ LT L LM NN Y SRR

‘\
.
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elers .:'\.-\..r.}. Ay v z‘.“}_r.)- fodeg
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Then since AS and T(s,t) 0<s<t<T are continuous linear operators from

¢ tod, if & 9 in ¢
la (s, 00l 3, 1aTGs, 00l all m=1.

Then by Fatou's Lemma Kt (¢) is a lower semicontinuous function on ¢ and by
Lemma 1(a) Kt(q)) <x for all ¢e d. Also Kt(¢l+¢2) sKt(Cbl) +Kt(¢2),
Kt(atbl) = IaIKt(cbl) ae R, ¢1,¢2 € ¢. Then by a Baire category argument
there exist et >0 and r, >0 such that
<
Kt(¢)—6t||¢”r for all ¢ e d.

t
Thus

1A

t t
[gws[AsT(s,t)Q)]ds[ sup W[ _ {)’HAST(s,t)(ﬂlqu

0<s<T

IA

sup |lw || |\q>||r for all ¢ e &
0<ss<T t

and therefore I(C)WS[AST(t,s)d)]ds is continuous and linear on ¢ i.e.

t
fT(s,t)'A'W (w)ds ¢ ' 0<t<T.
0 s s

Then from (1. 1) &t(uu) e d' for each we Ql and t 2 0.

Step 2. We shall prove that (Et)t>0 satisfies (c¢) in Definition 1, i.e.

it must satisfy that for each t 20 with probability one

t
(1.3) £.(0] = v(o] + W (o] + ISS[AScp]ds for all e d
0

Applying Lemma 2(a) to B=I, F=Y and u=0 we have for all ¢e¢ ¢

t

(1.4) Y[T(0,£)0] = (o] + [Y[T(0,5)A ¢lds.
0
\

Taking F=wu and B=Au in Lemma 2(a) we obtain

t
(1.5) wu[AuT(u,t)w = wu[Au¢] + éwu[AuT(u,s)ASMds.

J 'J"I'I CRAO AL A L, J"-ﬂ KPR UR T g AL D -,( W s" A \, S SN LT '.'w AN 4
el ”" '\'1'%'(‘*’:’; ’-"-.rr bods % - ><\[‘ o Q N \u:! } q" '?
G W oty h WD ' Tl N M 0 q";’ % o 10 “t‘a ! a‘-\"l\‘l' A MU R
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i
f:.;:’ Using (1.4) in (1.2) we have that for ¢e @
2
g : :
i £ [6] = v[¢] + [y[T(0,s)A _¢lds + W _[¢] + [W [A T(u,t)¢]ds
. t 0 s t 0 u u
LN
i':'v'
Eg: and using (1.5) in the last term of the above expression and applying Fubini's
¢
iy Theorem we obtain that for all ¢e¢ ¢
[ t t t .
3":: Et[dﬂ = v[¢] + {)Y[T(O,S)Ascb]ds + WtL¢] + é{WU[AuM + l{‘\’u[l\uT(u,S)ASCb]ds}du
I
Bris)
:::g: _ t t t s
W = Y[A0) + W (0] + [Y[T(0,5)Adlds + [W_[A ¢lds + [ ([W [A T(u,s)A_ ¢]du)ds
) 0 0 0 0
_—
t :
Y = Y91 + W [9] + £{y{T(o,s>A5¢1 +W_[a0] + {) W, (A T(u,5)A ¢ldu}ds
-
) L]
‘s ¢
\ = Y01 + W _[9] + [€_[A 9lds
3 :
"
PN t
-;:;; i.e. g (6] = Y[6] + W 0] + (f)gs[Asmds 0<t<T a.s.
and therefore (1.2) satisfies (1.3).
r§
LE
o Observe that (t,w)-*&t(w) is B((I>')/B(]R+) ® F-measurable and for each
L
R0 t20 Et is F::]’Y-measurable where
.
\ W
5:::', Fo'¥ = olyle],W_[6] : 0<s<t, ¢ 0}
b o
(24 >
Step 3. For a.a. wP t Et(w)[¢] is continuous. Let we 1 From (1.2)
:: it is enough to show that
b ¢
ﬁ Y [9] = éws[AsT(s,c)Mds
ol is continuous on t for each ¢ ¢ d. Let T>0 and 0<% tos t<T, then
N t %o
W (1.6) Y [0] - ¥, [6] = [W [A T(u,t)¢]du ~ [ W [A T(u,t )¢ldu
UG . 0 0 0
s "0 ge s S )
:::‘:: = (j) {wu[AuT(u,t)d)]—Wu[AuT(u,to)tbl ds + { W [A T(u,t)¢]du.
i'.:n 0
o
S WY

}‘. “'J"’Q‘~ﬂ‘-f f“-.).F ’(n‘!‘(ﬂ F‘h’\"\ '\. y, .' ,\ d LY \((H ')-\"Wl."l)‘\.() .'\ ih‘l.\,[
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)
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Using Lemma 2(a) with F=wu, B=Au we obtain

t
W [A T(u,0)0] = W [A o] + [W [A T(u,s)A 0]ds

u

. and agair. applying Lemma 2(a) to F=Wu, B=Au and t= to
%o

W (A T(u,t)0] = W [A 6] + £ W, [A T(u,s)A _¢lds

and therefore
t
(W [A T(u,t)9] - W [A T(u,t)0]} = [ W [ T(u,s)A_¢lds.

o

Using the last expression in (1.6) we have

‘0
Y (0] - Y [¢] = é

t t
. fu_[A T(u,s)A 0ldsdu + [ W [A T(u,t)¢]du.
0

u
t

t 0

From Lemma 1l(b) for some r

1 rl(A,T,q) >0 and Dl= Dl(A,T,q) >0

sup ||AuT(u,s)AS¢|[q < D||¢>Hr for all ¢ € 9.

O<u<s<T
Hence
t
|Yt[‘“ -Y_ [¢]] <I flw [T(u,s)A_¢]]|dsdu + f W, (A T(u,)0] |du
O 0 tO to

< sup Hw I (t (-t )D[|o]l _+ (e -t )pllef]}
0<s<T 0 0 r 0 “r

i.e. for OStOStST

A

Y 161 - Y_ (01| sup |[W_||_ TDII¢H (t-t.)
t t 0<s<t r 0

and similarly 4if 0st< to <T

A

Y 101 - ¥, (011 sup [0 [l_ ool (- 0

0<s<T
i.e. for we Ql and ¢ ¢ ¢
''''' ) LY & 34 N A RSN AW n-.\\-. AR M BRSNS N T o S
ks SR I u“* s Fod \. Z). S Ry \"» \"V‘s R SO N S SR Ut
Bl S LAEI N PO *'w 4 3L IO N .'«.,.o,"n‘l‘t.'m A 3 SRR LRI N
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(2
pact o
o
[\
B Y, @(¢] - ¥ @Ie]] < sup [[W_(w)l_ (Il fe-eol erepe 0,1
L t t r 0 0
yhy 0 0<s<T
Hence Yt(w)[d)] is continuous in t for all ¢e® 0N<t<T on a set of proba-
x‘.l'
t
:", bility one. Moreover from the above expression we obtain
1
e (1.7) sup lYt(w)[(D]I sup |[w (w)H T D||¢||r for all ¢ € 9.
e 0<t<T 0<s<T
R Also from the last expression and (l.2) we have that condition (d) in Defini-
Jiay
: tion 1 is satisfied.
QA
ol T
o Step 4. We shall prove that &, e C([O,T];d)kr) a.s.
AN
«’:l' .
;l: Let we 2,. Then from (1.2) we have that for t.,te [0,T]
s . 0
B
B € @01 =€ (@I91] = [Y(w)[A)T(C,£)0] - ¥(w)[A,T(0,t)$]]
0
F,r“_
N + Y @)=Y (@Ie]] + |W (W) e] - W_ (w)e]].
A',['\ t tO t to
l.ﬁl.
"- Hence from Al, A2, Lemma 1l(b) and (1.7), for mT>max(r0,r,rA,q)
-
) e @81 -8 @ol] < {2 sup [[W ) l_ + lly@ll_Ixllofl
Y 0 0<t<T i) T
s
::‘ for some constant KT which does not depend on w nor t and tO.
oty
. Also from (1.7), (1.2) and the assumptions on W and n
o
“,' E( sup (£, [¢]) ) <C H¢|| for all ¢ e ¢
'1: n 0<tsT
R
for some constant CT> 0.
> Let £_>m_ be such that the injection map ®,<—»® is Hilbert-Schmidt
AN T T ET m,
‘
. and let {¢,}., ., <® be a CONS for &, with dual basis {§,},_ ., a CONS for ¢} .
b ®57521 e ¥t £,
Then
N I 2 < 2
i EC] sw (€ 10.D) DIRNE) oslly <=
s j=1 0<t<T j=1 T
W
i::!. Let
s T 2,
X Q) = {w: z € e D7 < }oq
& o
h “
7:-.:
B
& PASE T AT AR g " P PL LY, 1 : DA . LR TR R S,
o )"‘a)*)x .J,\J' r.rwhn“d'g’.‘f-’ --r.{. el KRR {.'\ "‘n" AT Y K.
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and define E (w) = Z & (w)[d) ]@ for we 2, zero otherwise. Then

2
E( sup lla 12, ) < Z e Il < o
0<t<T K T j=1 T

and if weQz and to,te (0,T]

lim ”& (w) - (w)“ Z
t>t

i z HAGICREES (w)[¢.])2
0 ety 3=t !

z Lin (5, W[4,] - &, <w>[¢j1>2 -

j=1 t:->t0 0

Then ET(w) € C([O,T],<1>é ) we QZ' Moreover
T

E 8] = | & 6,18 10] = Z £ (W 10,1<0,0.>
J 1 T

j=1 =1

jzlgt(w)[<¢,¢j>£T¢j] =g WI9] for all $c® 0<t<T weQy.

From now on we write £ instead of % .
Hence we have shown that for each T> 0 there exists ET such that

&Te C([O,T];Qk ) a.s. 1i.e. ETe c([0,T];9') a.s. Then if QT={w : ETE c([0,T],%")}
T

- O = @ o . Bt
P(QT) =1 and taking Tn1‘°° and n-D-lQn we have that for weQ E&(w)e C(]R+, $'),

i.e. condition (6) in Definition 1 is satisfied.

Step 5. Uniqueness. Suppose that there existsa ¢'-valued process § = (Et)
that is also a solution of (II). Then by Proposition 1 for each T >0 there

exists a set {1, of probability one such that if we

3 3

Tl (w) « c([o,r];%T) some p, > £, 3

and '
t

(1.8) _ﬁ_t(w)hb] = v(w)[¢] + J’Es(w)[Asq)]ds + wt(w)[cp] for all de¢® 0<t<T. i

0 |

et ,\v_q\-,_-‘.- Lttt LT TS \-..'.'. DR R
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o
M
:::" Fix we anQj. Then, suppressing w in the following, if in (1.8) we replace
g.l'\'
:::::: ¢ by AST(s,t)ip we have
[ 8

oy - F _ _ - ‘
e WA T(s,0)0] = €_[A T(s,t)0] - Y[A_T(s,t)0] (f)gu[AuAsus,t)p]du.
A
o . . .
24.: Hence, substituting for WS[AST(s,t)¢>] in the expression on the RHS of (1.2)
e and using Fubini's theorem we have
o
‘ }r t t

A (1.9) £ (9] = y(T(0,t)6] + [ £_[A T(s,t)9lds - [Y[A T(s,t)olds
Sei t o S s o S

el -
e f [ & [AuAST(s,t)d)]dsdu + wt[¢].

l..l Ou

-J Applying Lemma 2(b) to F=7Y and B=1 we have
Q:‘.

J.h t

" (1.10) [Y[A_T(s,t)lds = Y[T(0,t)4] - Y[¢].
3958 o °®
\{‘

e —

‘_:, Again applying Lemma 2(b) to B=Au and F= &u we obtain

“I

t — — —

o [ (A A T(s,t)0]ds = € [A T(u,t)0] - £ [A ¢].
=
B : Finally using (1.10) and the above expression in (1.9) we have
Iv,l

Ny £.10] = v[T(0,£)¢] + J EJAT(s,t)0]ds - Y[T(0,£)9] + Yv[¢]

0

l/
‘ t t _

ol - [ £ (A, T(u,0)01du + [ T [A ¢1du + W [9]

0 0

=
Pl ¢ =

o = v[6] + [ £ [A ¢ldu + W (6] = E [¢]

o

Thus for each T> 0

!

() .

it —

e £, (0] = E @[0] for all 9c® 05tsT weR,nly

O

:: Then we have shown that for each T> 0 there exists a set QT of probability

o

;

L5

P4

.5‘.:
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one, such that for we QT St(w)==E;(w) 0<t<T. Let Tn‘fw and define

—_ w
Q= n Q_, , then
=1 T
" n=1 "n
P(f =€ t20) =1
t t

which gives uniqueness of the solution. Q.E.D.
\ We now show the semimartingale and Gaussian property of the solution of
k. the SDE(II).
E A ¢'-valued stochastic process (Xt)t>0 is said to be a ¢'-valued semi-

Y martinglae if for each ¢ ¢ ¢ Xt[¢] is a real valued semimartingale i.e.

h o ) ¢
= + +
i xt[q)] Xo * My Ve
- where M¢ is a real valued local martingale g==0, Vf a real valued right
P, continuous adapted process whose paths are of finite variation, and Xg is
[]

an Fo-measurable random variable.

Proposition 2. Under the hypotheses of Theorem 1, the solution £ = (St)tZO

of the SDE(II) is a ¢'-valued semimartingale with canonical decomposition

» s s o Lz M

) t
= LEY 1At
£, =W+ {T(0,t) 'y + j(;T(s,t) ASwsds}.

Proof. From Theorem 1 we have that the solution of (II) is the ¢'-valued

' continuous stochastic process £==(£t) such that
' t
(1.11) g o] = v[T(0,t)9] + ij[AST(s,c)q)]ds + W [6] for all ¢ < 0.
0

In step 3 of the proof of Theorem 1 it was shown that the ¢'-valued process

t
Y [0 = (I)WS[AST(S,C)cb]ds

LT Y.

is continuous. Moreover it was also shown there, that if 0< tos t <T then

(]

P X

> R [P ItV JR e LY, 1, L. AP Y IR T S B W N e PR . ' . LTI N . . NN T a
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(1.12) Y (o] ~ ¥

to[q;]] < sup ||wsl|_qTDl|¢||r(t—t0).

0sss<T
Hence from (1.12) we have that for all T>0 Yt(w)[¢] is a process of finite
variation for w in a set of probability one.
Next define
g(e) [¢] = Y[T(O0,t)4].

Then using Kolmogorov's Forward equation

d d _ o d, ‘-
S8 (0] = TYIT(0,0)0) = YIFT(0,0)8] = Y[T(0,t)A 4]

Next defining GT(¢) = supOStSTHT(O,t)At@HrO from Lemma 1.2(b) and assumptions

Al and A3(a), GT(¢)<oo for all ¢ € . Then using a Baire category argument
< o
G () < 6T||¢>HrT for all ¢« &.

Hence, the function [T(O,t)At$] is bounded in (0,T) which implies that g(t)
is a function of bounded variation on [0,T]. Also clearly g(t) is a continuous
function of t.

Next define

t

v [9) = Y[T(0,0)9] + éWS[AST(S,t)¢]dS-

Then Vt[¢] is a ¢'-valued continuous process such that for all ¢ ¢ Vt[¢]

has paths of bounded variation. Moreover since Y{T(0,t)¢] and Yt[¢] are Ft—
adapted then Vt is a predictable process. Hence we have the (unique) canonical
decomposition

(1.13) Et[¢] = Wt[¢] + Vt[¢] for all pe¢¢d t=20 Q.E.D.

Proposition 3. Assume the hypotheses of Theorem 1 and suppose that Yy is a

$'-valued Gaussian random variable independent of the ¢'-valued Wiener pro-
cess W==(Wt)t>O with covariance Q. Then Et is a ¢'-valued continuous Gaus-

sian process with covariance




tt
o . . ,
(1.14) K(,9) = Q (T(0,t)9,T(0,t)d) + (f)émln(sl,sz)Q(Asif(sl,t)v.AS;F(sz,t)u)dsldsz

+Q(¢>,W) d)’we‘b t20
where QO is the covariance of Y.
Proof: Since IBWS[AST(s,t)¢]ds and Wt[¢] are independent and

Yt[¢]= fgWS[AST(s,t)¢]ds is Gaussian with covariance

tt
E(Y (9]Y [v]) = (I)gmin(sl,sz))Q(Aslr(sl,tm,AszT(sz,c)w)dsldsz

then the result follows since Y is independent of Yt and Wt.
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2. Solution of the SDE with Perturbation
In this section we solve the SDE (I).
’:: Definition 2. We say that the SDE (I) has a $®'-valued solution E,=(£t) -0 if
Wons -
"\_::.: the following four conditions hold
'
by
a. (t’,t) is Ft—adapted and &'-valued.
w," h. QEC(]R_’_;(D') a.s.
¥
3 ; - t t
P . c = + A ds + + f .s. > Q.
0 c. £.[6] = vlol + & [Ad)ds + [£ [P d]ds + W [#] for all ¢ a.s. £20
ve d. For each T>0
,Q" 2
\ E( sup IS [<b]l)<°° for all ¢ .
o 0<e<T ¢
‘:.:E The following result is proved in the same way as Proposition l.
Proposgition 2. 1If &= (gt)t>0 is a solution of the SDE (II) then for each
"- 2
-
: : T>0 there exists nT> 0 and a version of £ (also denoted by &) such that
oy
i‘l. T
Eve C([O,'I‘],'<Z>r'l ) a.s.
v.\ T
":j.)', and
S t t
-‘_--( = + £ { + + f 3 < < . S.
o £ .[61 = vlo] éc,s[Ascblds (f)&S[PScb]ds W [o] for all 9cd, 0<ct<T a.s
K Remark. Condition (d) in Definition 2 is implied by the following one:
\
: j For each T>0
i T 2 T 2
g Ef(E_[A_¢1)7ds + Ef(§_[P_0])ds < =.
s''s s s
0 0
S
-:-:.'. In order to solve the SDE (I) we first solve the following stochastic
2 .
e equation: {
‘i t
= ' '
(1I1) £, s (s,6)PlE ds +n  £20
X 0
\ -
e
-"J-. 1.e
".,: t
Ll £, (6] = [£_[P_T(s,t)0lds + n [¢] for all ded
0 D
WA
A
A
”?‘n
I
l’|
IR A S -(.x.r_a-,.r.f Tl ‘n, . r;{,:ﬂj_-_- TN T N N N T N i
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where r‘|t is as in the following theorem. Then taking nt as the solution

given by Theorem 1 we obtain the solution of (I).

Theorem 2. Assume that A3(b)-(c) and A4 hold and let n= (nt)t>O be a $'-
valued continuous stochastic process such that for each T>0 there exists
dr >0 and

2
E( sup Hn I ) < o,
0<t<T ~47

Then there exists a unique ¢'-valued solution £ = (&t)t>0 of (III) on

C(R,; ¢') with the following property: for each T> 0 there exists pT> 0

such that
£Te c(lo,1]; & ) a.s., ECsup |Ig, 12 <=
T 0<t<T T
and
t
£ [6] = [& [P T(s,t)dlds + n [¢] for all p¢d O<t<T a.s.
t 0 s s t

Proof. (By successive approximations).
Let T> 0 fixed and

QA ={w: sup Hn (W) || < =}
0<t<T Y

Then P(QA) =1.
Let wce Qa and define for 0<t <T the sequence of successive approxima-
tions:
0
it(w) = nt(w)
1 F 0
£ (w) = [T(s,t)'P'E (w)ds+n_(w)
t 0 S°s t

Lt
2 (w) - ér(s,t)'P;_a;"lm)dsmt(w)

that is (suppressing w in the writing) for ¢ed, 0<t<T and n21




t"i 24
X
A -1 _
R Selol = n (9]
:eiv t
’ 2161 = [n_[P_T(s,t)0lds + n_[4]
R t 0s s t
A5
-~ :
:' n t n-1
‘g = -
g €t[¢] éés [PST(s,t)Mds + nt[¢].
oy
,3 Step 1. We shall prove that the above expressions are well defined elements of
i ' for all n21 and t20. Let
L,
I'.
(2.1) Cp=Cplw) = sup[l& W)l = sup Hn (w) || <® .
a 0St<T 9T ostsT ~dp
.{_ Using assumption A4, given qT> 0 there exist positive constants
pw
o = = = '
R Cl Cl(T,qT), C2 CZ(T’qT)’ L mT(qT) and qT>qT such that
L !
¥ (2.2) ||q>|,qu Cllllcblllst Czll‘bllq% for all ¢ed .
k-
-:: Also by assumptions A4(a)-(c) we have
&
) (2.3) sup (|7 T(s,o)0lll <k illelll for all ¢ ¢ 9.

b O<sst<T  ° my T o
"
;: Let we Qa and define (suppressing w in the writing)
h;

1

£.[91=n (9]
'4-'*
\‘
l:q and for nz22
5
.»_ 9 t 1 t
- £ () = [5 [P T(s,t)0lds+n [¢] = [n_[P T(s,t)¢]ds+n [¢]
- t 0 0
K)
W t
At 3 2
e £.(®) = [E0 (P T(s),t)0)ds+n [¢] R
5 071 °1
0 ;
. = [P T(s,,s,)P T(s ,t)dlds ds + fn [P T(s,,t)dlds, +n [¢] .
% 00 5y s, 27107, 2 0, s 1 17
o
R
P
2

R LW, ~...~~. ~_. s ._-'..--_,-_- _'-_'}_ N -_:_._-_--"\-
....... Ly -~ “:‘ .
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n t n-1
£, (®) = f&s (P, T(s;,t)$)ds + n _[¢]
0 1
T2 $n-2
= g {) ..-{) nsn_l[Psn_lT(Sn-l'sn—2)°"PslT(sl’t)q)]dsn—l-“dsl
(2.4)
2 Sh-3
+ é é .é nSn_z[PSn-zT(sn_z,sn_3)...PSlT(sl,t)¢]dsn_2...dsl

+...4+ nt[¢]-

Observe that the above integrals are well defined since using (2.2) and

(2.3) we have

n (e T(Sn—l’sn-Z

)...P_ T(s,,t)$]|ds__,...ds
0 n-1 %n-1 s 1 n

1 1

OY—rtr

?1
0

-1 1

IA
(@]
]
Ot

$1 -2
é ...é HPS T(Sn—l’sn-Z

)...P_T(s,,t)¢]| ds_ ...ds
n-1 1 L 9 0

(2.5) 1

IA

(@]

(@]
OS—rt

s 8
1 n-2
é ...é )”Psn_lT(Sn_l,Sn_z)---PSlT(Sl,t)¢|”desn_l...ds

IA
O
(@
7~

e
.o H[P T(s »S )...P T(s ,t)¢lH ds ...ds
T 1 T0 0 0 $,-2 n-2’"n-3 ) 1 o n-2 1

n n

o ®"
& v ol s ooy — el <

IA
(@]
(@]

Then each integral in (2.4) is well defined and furthermore from the second

inequality in (2.2), for all n21 and 0<t<T we have

k
T)
(2.6) €L @ @) ] < C e ( 2 — ¢, H¢[| for all ¢e
k=0
Then for each n21l and 0<t<T E:(w) e¢q,,
T
n (KTT)k KT
(2.7) ng W] _ a < Co(w)C/C Zo—_ET—_ s €.CCoe
‘. JJJJ'GV'U'\’ ":"“Qﬂwm ~~vvv u~m-u»\~Wu

Paa. g ( ; ) o <

8 0% 2 ﬂ\ ~J' JE'»’ﬁ'ﬁy, )( M'\ - VoS ”MVHU“M”%&\ vﬂ\aﬂ\'ﬂﬂ J'\\h
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o8 __.n n
oS and we can write £ (w)([¢] = £ (W) (d) we 93-
AN t t
'?ﬂ. n
Step 2. The sequence (Et) converges.
)
g{“ From (2.4) we have that if m<n
§: n m }: ?l Sn—2
X S0l -8 [¢0] = f n [p T(s _{S__ )...P T(s,,t)¢]ds ...ds
Nrey t t 00 0 sn~l S.-1 n-1""n-2 SJ. 1 n 1
he
J::{l' ts, s,
2843 m-
o +oo+ [ [T n [P _T(s ,s_ ,)...P_T(s, ,t)dlds_...ds
"f.. 00 0 Sy Sp m m-l s; 1 m 1
Q.‘.:'
N
and proceeding as in (2.5)

AN M
“.'f 0 . n (KTT)n

o (2.8) lf,t[¢] - Et[¢)]| < C.CC, ) ——19———||¢|| , for all ¢e ®.
[ k=m+1 ) dr
L)

.‘ ]

' Then for each ¢ ¢ ® and we 823 |E,:[¢] -ET[¢]| converges to zero uniformly
"": on [0,T} as n>m+>~, Hence {E:(w)[cb]}n)l is a Cauchy sequence of real numbers
o~ 2
.r:.' and from (2.6) for 0<t<T

‘I
R,

' a KTT

o | 1img _(w) 1] s C (w)C.C.e = ||¢i] ., for all ¢ d.

WA T

%)
K~
."'{‘:: Hence for 0<t<T and we QB Et(w) defined by
13.:’

'y £ (w)[¢$] = lim €n(w)[¢] for all ¢ed

L t t

. n—>e
>

i
3 : is such that
YN K,T

- sup |£t(w)[¢]l < Co(w)C Cye |6}l , for all ¢eod
S 0<t<T a7
o
KT and therefore Et(w) is a linear functional on ¢, i.e. Et(w) e $'. Moreover
~ -
k from the last expression we have that { satisfies (d) in Definition 2.
[y Next let £T> q,i, be such that the injection map ®£€> <I>q, is Hilbert-
X T T

AR . .
fn’fﬁ Schmidt and let {¢j}j21€ $ be a CONS for %T with dual basis {63.}3.Zl CONS in
) CDET. Then
o

L B i

|
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2K

2 2 T
sup z OIS 117 < ke e 7 e 112,
O<t<T j=1 R je1 qT

and we can define

£ (W) = jzlat(w)[¢j]¢j-
Hence gt(w) € q)f", 0<t<T we §23 and moreover gt(w)[(b] = Et(w)[cb] for all ¢e &:
T
Sp@iol = 1 £ @o18,00] = ] £ W6;1<0,0,>,

j=1 j=1 T

[}
It r~18

n
E @ [<0,0.>p 6.1 = Lin (@)[ ] <02057p 9]

j=1 T nre j=1

Et(w) [¢].

Step 3. Et satisfies (c) in Definition 2, i.e.

t
P(w: & (w)[$] = J€ (W)[P T(s,t)dlds + n (w)[¢] for all ¢)=1 O0<t<T.
OS S t Y
Let we 93, ¢ed and 0<t<T. Then

t
2w (9] = éag“l<w)lpsr<s,t)¢1ds +n (o],

Next, by assumptions (A4)(a)-(b) and Remark 1, given IZT> 0 there exist positive

constants dl,dz,in' and £! such that

(2.9) H¢IL£T < 4 lllelil v = d2H¢|lz% for all ¢ .
Then
sup ||P T(s,t)0fl, <d, sup [P _T(s,t)0[ll
Oss<t<T 3 €. 7 1 gegeter S m'
< apllisll,
"""}‘.ﬁ‘j‘r 4'\'\ \.,'\,_ ,.* '-‘-(':}‘-_-‘f \.
A et H.»-‘u!.l'n l‘!.'~ "\ ".




M'aluh n

and using (2.7) since ZT> q,i.

~n-1 -1
€3 [P T(s, )01 < [I£] ||_£T||Psr<s.,t>¢>||ZT

K_.T

T
<cCcChe dlDH]q)“]m, <o for all n21l, O0<s<t<T.

12

Then using dominated convergence theorem

g o] = ii:&ﬁ[¢] lim IF, [PST(S,t)d)]ds +n (4]

o QS

t
fgs[Ps'r(s,t)qﬂds +n.[¢] for all pe¢, Ost=T.

Step 4. &r,re C([O’T];¢I; ) some p,r>0. Let to,te [0,T] T>0. Assume
T

to <t, then

t t
(2.10) £ [81-£ (6]=[e [P T(s,t)01ds - [0 €_[P_T(s,t)0]ds + n 0] - n_ [4].

0 0 0 0
But
t to
é £,[P,T(u,0)0]du - é £, [P T(H, o) 1du
t
- /0 (€, [P, TG, 0] ~ £ [P T(u,t )¢1>du+f g, [P T(u,t)9]du.
0 o
Next using Lemma 2(a) with F=€u, B=PU’ we obtain
t—
£ [P T, )8] =£ [P ] + ‘{cu[Pum,s)ASMds

and again applying Lemma 2(a) to F=£u, B=P , t=t

t
- 0
gu[pur(u,to)«b] = £,(P o] + £ £, [P T(u,)A 01ds

and therefore

t
6, (P T, )01 = £ [P T(u,t)] = { £, [P T(,8)A d]ds.
0

Bl )
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Hence,
t to
[ € [P T, 001du = [T & [P T(,t)0]du
0 0
(2.11)
to t t
= é { €U[PuT(u,s)As¢]dsdu+{gu[Pur(u,tm]du.
0 0

By assumption A4(c) for ml;:nT some nT> 0 and T>0

sup |||P T(s,)lll < K (m, ,T)]|i|]l] for all e &
O<s<t<T m - 1L o

and using assumption A3(a) and a Baire category argument, for some m'’ Znu

and K(m',T) >0 we have
sup [IP T(s,t)A ¢ < K(m',T) {||¢ for all ¢ € o.
Sssts I s s l”m' l” ”lm'

Moreover suP0<sSt“£s"—K <® since from (2.7)
- T

TK
n n T
sup JlE0ll , < sup ||E7]|_, s cCCCe <.
octst © “fp T ogesr £ o C9p T 172

Hence, using the last three expressions and (2.9) in (2.1l)

t t
0
l(f)é’,u [P T(u,t)]du - / E P T(H,e)0]du

0
tot t
) < +
(2.12) < / { ||E,u||_£T||PUT(U,S)AS¢||£Tduds f||€ul|_z P TG, e)0 || du
0 % T
SCTDTH(I)HE{,(';—'ZO) Osty<tsT
T,
where DT==d2ClC2Te . Then for all t,toe [0,T]

t t
0 ‘
léiu[PuT(u,t)d’]du -(f) £, (B, T(u,t)oldu < !t-tolcTDTHM!q-

Then from the last expression Zt[¢]= f;&u[PuT(u,t)¢]du is a continuous
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e
:E': process in t ¢ {0,T] for each ¢ ¢ ¢. Then from (2.10) we obtain that St[‘;] is
4,

f
::'f! also a continuous process in te [0,T] for each ¢ € &. Moreover
e (2.13) sup |£ [#]] < (D +C )I|¢|If_.-

0<t<T

s
<5 Next let p. > Z,E, be such that the injection map ¢ C-’QZ, is Hilbert-Schmidt

' T
LA

and let {e ,},  c® be a CONS for & with dual basis {é,}.> a CONS for o'
a AERESS Pr jitizl Pr ‘
:-: Then from (2.13) we have
:
)
w 2
f:" (2.14) sup ? li( )[ I (C D +C ) 5 He H
0<e<T j=1 ZI‘

a'.;' - ©
& . = ~ . . . ]

Gl Hence, define Et(w) Zj=l£t[ej]ej which is an element in <I>pT and

‘ -~

N E,t(w)[qb] =€t (w)[¢] for 2all ¢ed O<t<T we Q3. Then by dominated convergence
b 2
Py

_ theorem, since Et(w)[ej] is continuous in t for each j 21 we have that

190

LS
\'. - ~ x 2

", < = : -F
k- lim Hc,t gt Il_p lim g (Et[ej] St [ej]) J
>, t-*to 0 T t‘*to j=1 0

a 2 4
-l = Z lim (€t[e J-€, [e,D" =0 t e[0,T].
N j=1 t->t to J

N 0

4,
‘l,o
.,.:' Then S,(uu) € C([0,T]; <br') ) for some pT> 0 we Q P(Q )=1. Moreover from
N T

f’ (2.13), (2.1) and the assumption on nt we have

-~
N 2
B EC sup | [8]]%) <= .

0<tsT

N 2

Al Furthermore from (2.14) and since by assumption on N, E(CT) <o we have that
\h
L -‘:
o 2 2 ¢ 2 ‘
L EC sup [Ig]1Z ) < E(cp+C)” | loflZ, <=
" 0<t<T Pr j=1 T
...
"8 1
'."}-; A similar argument to that at the end of Step 4 in Theorem 1 gives that

.l'
L) [ '
& 5t C(R+,<1> ) a.s.
W,
o3
*:
:s
o,

o N Aty AN IR -.._-.__..__._.

~ .-.- 1
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Step 5 Uniqueness

To show uniqueness let X be any solution of (5.3). For the present

assume that Xt satisfies the following condition:

(*) For each T>0 there exists p%3>0 such that X}e C([O,T];¢;,) a.s,
T
!>
WLOG let pT pT and

Q, = {w: sup HX [| <=},
0<t<T Py
Then P(Qa)==l. Fix we 93 nﬂa and let 0<t<T. Then for each ¢ ¢ ¢ (suppressing

w in the writing)

t
X (91 = éXS[PsT(S’t)¢]dS +n (9]

-0 . . . . .
Next if gt is the sequence of successive approximations defined in (2.4) we

have that for 0<t<T and ¢e d

t
l -
(2.15)  x.[¢) - £.1¢] = éxs[PsT‘S"‘)d’]ds
2 . %1
X (6] = £ (6] = (f)xs[PST(s,ths - (J;ES[PST(s,t)Mds
n . ¢ 51 Sn—l
X [6] - €[] = (f) £ : .g {xsn[PsnT(Sn’Sn-l)’"PslT(sl’t)‘“
1
- gs [PS T(Sn’sn-l)"'Ps T(sl,t)¢]}dsn...dsl
n n 1
t S.l Sn
= (f)(]) (f) X5n+l[Psn+lT(sn+l,sn)...PSlT(sl,t)¢]dsn+l...dsl.

t S
X [61-8%6) < fo..f™Ix. || HP. T(s .,,8)...P T(s,,t)]| ds_...ds
t t 0 0 S +1 “Pr sn+l ntl’ n s, 1 pr n 1
-;f;ﬂ:*-,'d-"-f-""'-'-' AR e e

| !
n.r. J*&“l .Q' 8 4

- l-\ih.4.

_‘ AR, Y, W




32
(K.}T)n
< sup thn_p cic —n—,—HMlm, < o for all ¢ed
0<t<T T - ) T
P . ' ' ? '
for some positive constants Cl’c2’ KT and mT.
Hence

sup |Xt[¢]"€:[¢]| >0 as n-w,

0<t<T
Thus P(Xt==€t 0<t<T)=1 and a similar argument to that at the end of Step 5
in Theorem 1 gives P(Xt==£t t20)=1. The proof of the theorem is complete.
Q.E.D.

Using Theorems 1 and 2 we now solve the SDE(I) i.e.

-
W

o
'l
|

\ ]
(At4-Pt)€tdt + dwt

Theorem 3. Under assumptions Al-A4 the SDE (I) has a unique solution

r o= > 1 >
3 (é:t)tzo such that for each T > 0 there exists pT 0 and
T 1
£, e C([0,T];:®%' ) a.s.
Pr
and
- 2
E( sup “gtH-p ) < oo,
0<t<T T

Proof. Let nt be the solution of the SDE

dnt

'
+
Aln dt + dW
Ng =Y

whose unique solution is given by Theorem 1l and it is such that for each

T> 0 there exists K=1T>max(q,r0),

nr e C([0,T130, ) a.s.
T
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and

t
(2.16) nt[®] = fns[As(b]ds + wt[cb] + v[$] for all ¢e ¢ 0<t<T a.s.
0

Let £ = (E,t) be the solution, given by Theorem 2, of the SDE
t
. = [T'(s,t) P’ +
(2.17) &, éT (s,£)P'E ds + n_

which is such that for each T >0 there exists mT>KT such that

T
£, ¢ C([0,T];®' ) a.s.
O
and

t
(2.18) £ (9] = Je [P T(s,t)¢]ds + n [¢] for all @ 0<t<T a.s.
0

We shall prove that gt is the unique solution of (I). First we show that it
is a solution of (I):

Applying Lemma 2(a) to B=Pu and F=£u we have

t
(2.19) 2, (PTG 0] = £ (2 01 + JE (BTG 0)A]ds.

Let

o)
1]

. {w:Erec([0,T];0! }

b

o]
1]

) {w: E?e C([O,T];%"T}

then P(Ql) =P(Qz) =1. Let we anQZ then (suppressing w in the writing) in-
tegrating (2.19) and applying Fubini's theorem we have

t t

t t
(2.20) éEU[PuT(u,t)¢]du = éaulpu¢1du + £ iEU[PuT(u,S)AS¢]dsdu

u

t
= égu[Pu¢]du +

Ot

s
éSU[P T(u,s)A_¢lduds.




Next from (2.18)

£ (A d] = éiu[PuT(u,s)As¢]du + nla 0]

Then using the above expression in the second term of (2.20) we obtain

) t t t t
b (2.21) ééu[PuT(u,t)¢]du - éau[Pu¢]du + éas[As¢1ds - éns[As¢]dS'

Y But also from (2.18)
(43 t

e £au[PuT<u,t>¢]du = g, [6] - n [o].

ol Hence from the above expression and (2.21) we obtain that

t t t
g lo] - n o] = éES[PS¢]ds + égs[As¢]ds - éns[As¢]ds

e T
R s
’v‘:‘*l 4, 4 5 A
[
i)

t t t
(2.22) g (0] = éES[PS¢]ds + égs[As¢]ds +n o] - éns[As¢]ds'

o But n,[0] - [on_[A_¢1ds = Y[6] + W_[$], then

t t
h<-- £ 101 = [E [P _olds + [£ [A 0]ds + Y[6] + W [#] for all ¢c @
OS S OJ S t

e dg, = (Al +P])E dt + du .

A% Now we shall show that the solution & =(£t) of (I) is unique. Suppose

4
v~1 there exists a ¢'-valued process E; that is also a solution of (I). Then by
Lol Proposition 4 for each T> 0 there exists a set Q3 of probability one such that

AN if weQ3

K\ &?(w) € C({0,T};¢' ) some q.>0
3 q T

Kalr T

. and

e
# ‘f'o

BV P G e T B e IR LT,
L L P I T I L A . T . . B e N - R N I
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W _ t t
o1, 9 r = , 5 N
e (2.23) £ @[] = [E_(@) [P olds + [ Z (w)[Ad)ds + YW [$] + W [2]
P, 0 0 |
G ‘
N for all e d 0<t<T.
)
\»f Fix we QA=QL nQZ 2 93. Then (suppressing w in the writing) we have that for
>0 )
v,
‘j; 0<s<t<T and ¢
— S_.
el = £ - {
0 (2.24)  W_[A_T(s,0)0] = £ _[A_T(s,t)0] (f)&u[PUAST(s,c)Mdu
G t
oo - [E A A T(s,£)0)du - Y[A_T(s,0)0].
0
3 On the other hand from (2.17), (2.16) and Theorem 1 we have that for 0St<T
f_-': and ¢ e d ) i
(2.25) 5 (o] - JE_[P _T(s,t)¢lds = [W_[A T(s,t)¢lds + Y[T(O,t)o] + W _[o].
S S S S t
. 0 0
(P W
.'.\.
:f,': Hence, using (2.24) in (2.25) we have that
o
2 £ £
(2.26) £ [6] - [6_[P T(s,t)d)ds = [E_[A_ T(s,t)plds
S S S S
y 0 0
\ - j’fg [P A T(s,t)0]duds - ffg [4 A T(s,t)d)duds
00
P a7 t
o - [Y[A_T(s,t)0)ds + v[T(0,t)¢] + W _[¢].
EA S t
oM 0
J‘{a
b Next, using Lemma 2(b) with F=y and B=T we obtain
o t
b (2.27) - [y[a_T(s,0)0)ds + Y[T(0,0)¢] = y[2].
0
‘. .\{
f!:‘i: Again, applying Lemma 2(b) to F=_€—u, B=PU and to F=§U and B=Ah we
DN obtain the following two expressions
- t _ _ _
-[ £ $lds = T (P ) = & [P TCi,t):
2 (2.28) [ B P AT(s,0)0)ds = 5 [P 8] - 5 [P T 0)1)
o 0
WY and
.‘
N
Wl
P
Vi
N

."_ . .-\_\_\_y ""'““J"‘?“‘-ﬂ P . 1_‘ A T AN AT et tec e RTINS -,-_j
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[A A T(s,0)8lds = T [A 1] - & [A T(u,t)0].
Ls U R

(2.29) - L

Ot

:’U
Hence, using (2.27), (2.28) and (2.29) in (2.26), we obtain

t t t
MEIE éastpsT(s,c>¢1ds = é g [aT(s,t)0]ds + é £, [P 01du

|
QO

—_ t r;T
£, [P T, 0)9]du + é £ 8 0)du - é 2,08 TG, E)9ld + (8] + W (2],
that is

s

t
£ (9] - gf [P T(s,t)o]ds = NN

Ot

t
g [P oldu + é e, 1A 01du + (o] + W (0]

1
Ot

E@[PUT(u,t)¢]du-

Hence using (2.23) for we QA 0<ts<T and $€ & we have that

RO

axll

ES[PST(s,c)¢]ds = n (o]

OY—nr

Thus any solution Et of (I) is a solution of (II) and therefore since Proposi-
tion 4 implies condition (*) in Step 5 of Theorem 2, the solution of (I) is
unique.

Then the properties of £ = (St) follow from Theorems 1 and 2 and the proof

of Theorem 3 is complete.
Q.E.D.

Proposition 5. Under the hypotheses of Theorem 3, the solution £ = (&t) of the

SDE (III) is a %'-valued continuous semimartingale with canonical decomposition

t t
Eo=w o+ {T'(0,t)y + [T’ ' + [T "¢ ds).
£ W {T'(0,t)y éT (s,t)ASWSds éT (s,t)PSgs s}

Proof. From the proof of Theorem 3 Z = (Et) is such that for all t=20 and $¢ &

t
£ (01 = éaS[PST<s,t)¢1 + n (81 + ¥[T(0,6)¢]

where
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t
n (] = ¥[T(0,6)0] + éwS[AST<s,t>¢st + 9 1)

-

and from Proposition 2 nt is a ¢'-valued semimartingale with canonical decompo-

sition
1
= +
r]t wt Vt
1 t
V. = T'(0,t)Y + [T'(s,t)A'W ds.
t S s
0
Hence it only remains to prove that
t
z (8] = [E_[P T(s,t)0lds
oS s

: is a process of bounded variation. It was shown in Step 4 of the proof of
Theorem 2 that Zt[¢] is continuous in t for each ¢ ¢ ® on a set of probability

one. Moreover from (2.12) we have that for each T>0 and 0< tOS t<T

|z, (9] —Zto[(bll < CTDTT”d)HKi‘(t—tO).

Hence the process Zt[¢] is of bounded variation on [0,T] for each T> 0. More-
over since it is continuous and Ft—adapted, it is predictable.
Writing

y _ 1
. v (6] =z [6] + Vo]

! we have that Vt[¢] is a continuous predictable process of finite variation and
it[®] admits the canonical decomposition
: £, [0] = W (6] + v [6].

Q.E.D.

Proposition 6. Under the hypothesis of Proposition 5 if Y is as in Proposition

-

3 then the solution £ = (gt)t>O of the SDE (III) is a ¢'-valued continuous
Gaussian process.

Proof. From the proof of Theorem 2 Zt[¢] is the a.s. limit of a sequence of

n , .
Gaussian random variables Et[®]. Hence Et[¢] is Gaussian.

‘ Q.E.D
t
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i 3. Stochastic Evolution Equations Driven By Nuclear Space Valued Martingales

A &'-valued stochastic process M==(Mt)t>0 is a ¢'-valued martingale with

=t

: respect to a right continuous filtration (Ft)t>0 if for each ¢ ¢ ¢ Mt[¢] is a
3 2
Q' real valued martingale with respect to (Ft). In this section the following
* result will be useful.
M
Proposition 7. If M is a ®'-valued martingale with respect to Ft then
X there exists a ®'-valued version M of M such that the following two conditions
R
hold:
; a. For each T>0 there exists qT?>0 such that
’ﬁ T '
N M. e D({0,T};®' ) a.s.,
qr
& where D([O,T];@é ) is the Skorohod space of right continuous left hand limits
: T
o (r.c.1.1.) functions from [0,T] to &'
- 9T
) b. M is r.c.l.l. in the strong ®'-topology, i.e.
f& Me D([0,x);d') a.s.
R =
$
v: For the proof of this proposition, see Mitoma (1331).
)
. Consider the stochastic evolution equation
b
- d = A'E dt + P'¢ dt + dM
X (IV) { t tot tot t
" .
K &0 =Y
‘: where Y, At and Pt are as in assumptions Al,A3 and A4 in the Introduction
- 2
2 and Mt is a ¢'-valued right continuous martingale such that E(Mt[¢]) <o for
l
K all ¢ ®, t=0.
;: In this section we show how to solve the SDE (IV) in a similar manner as
t for the ¢'-valued Wiener case. Our goal is to prove the following analog of
-
Theorem 3.
5]

o’

:13: A O R e

)ﬁu

‘l‘ Y
whnhE A‘\!‘“ ey Dl't’“ Q'g,@'l.l"‘i AN .., ! .ﬂj {{ . } )



2
Theorem 6. Let M= (M) be a ¢'-valued martingale such that E(Mt[‘?]) <

t 20
for all ¢ ¢ ¢ and assume that Al, A3 and A4 hold. Then the SDE (IV) has a unique

solution & = (Et:)t> such that for each T> 0 there exists pT>O and

0

el e p([0,T1;0" )
Pr
and

- 12
ECsup [[g, 112, ) <.
0<t<T pT

Furthermore £ is a ¢'-valued semimartingale with decomposition
t t
g = {T'(0,t)y + [T'(s,t)A'M ds + [T'(s,t)P'E'ds} + M_.
t s's s’s t
0 0
As in the ®'-valued Wiener case we first solve the SDE without perturbation.
2
Theorem 7. Let M= (Mt)t>0 be a ¢'-valued martingale such that E(Mt[q?]) <o for

all 3= ¢ and assume that Al and A3 hold. Then the SDE

\J \
d
dg Atst t + th

t
(V)

£ = ¥

has a unique ®'-valued solution £ = (E;t)t>0 given by

— ] t L L
. = + +
1 Et T'(0,t)Y IOT (s,t)A'M ds Mt t=0
i.e.

t
3.1 Et[¢] = Y[T(0,t)9] + fMS[AST(s,t)cb]ds + Mt[cb] for all ¢e® t=20 a.s.
0

Furthermore F’t satisfies the following two conditions:
2. for each T>0 there exists £T> 0 such that

£TeD([0,T150; ) a.s.
T
and

£ sup £, ) <
sup ~ o,
osesT E g

3. &t is a ®'-valued semimartingale with decomposition

O R T Ty S L N
-'.\'4‘., .\’} N AN >
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t
= {T' + [T 'M + M .
&, {T'(0,t)Y (f)T (s,t)A! sds} M
Proof. Since the proof of this theorem is very similar to that of Theorem |

we only give an outline of it.

Let T>0, then by Proposition 7(a) there exists qT3>0 such that

M?e D([0,T];®' ) a.s.
a7

Let

= {w: M2 (@) € DCLO,T158! D} fw s [y || __
*T

Then P(Q{)=4l and if u;le the real valued map t*-HMt(w)”_q from [0,T] to
T

R is right continuous with left hand limits. Then by (14.5) in Billingsley

(1968)

(3.2) sup ||Mt(w)|| ©
0<t<T T

This fact enables us to show as in Step 1 of Theorem 1 that the map
t
o~ /M_[A_T(s,t)0]ds
oS 8

is linear and continuous on ¢.
As in Step 2 of Theorem 1 it follows that the putative solution (3.1)
satisfies (V). We need only to replace W by M.

Next, as in Step 3 of Theorem 1 and using (3.2) it is easy to show that

Yt(w) given by

t
(3.3) Y WI(e] = fMS[AST(s,t)dJ]ds for all ¢ e ¢
0

LAY satisfies the inequality
¥ )l.
Koy (3.4) Y (61-¥, (ol < sup |l l|_ Tollell fey- ¢l
:] 0 0<s<T T
'§ ' for tgot € [0,T} and some D>0, r>0. Hence, Yt(w)[¢] is continuous in t on
oy
¥ (‘:
o
g
PR
"5%‘ S0 oSG LTS AT A ) A DA A 4N

% XORTY Vgt \ °"‘-s"‘ e NG M"ﬂ
EHANT RS T WOINE YRLSE K, AG.WWQN%M&”%M0.u§ o?'w; &$XE}
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[0,T] for each ¢e$ and we QI. Then by (3.1) gt(w)[¢] is right continuous.
The proof of the existence of a D([O,T];@kT)—version is similar to the proof
of Step 4 in Theorem 1 using again (3.2). The uniqueness is shown in a simil
way.

Finally the semimartingale property of the solution is shown in a similar

manner to Proposition 1.

Q.E.

Theorem 8. Assume A3(b)-(c), A4 and letn =(n)

LI : -
20 be a ¢'-valued right con

tinuous stochastic process such that for each T> 0 there exists qT3>0 such
that

2
E( sup ||nt||_ <®) =
0<t<T At

Then the stochastic equation

t
= ' (N
(V1) £, éT (s,t)PlE'ds + 1 £20
has a unique ¢'-valued solution £==(£t)t>0 such that for each T> 0 there

exists pT >0 and

£l ¢ D(10,T]30' ) a.s.
Pr

The proof is similar to that of Theorem 2. The only change is in Step 4
where we must show that Et[¢] is right continuous and ETe D([O,T];¢é ) a.s.
T

Theorem 6 now follows from Theorems7 and 8 using the same arguments as in

the proof of Theorem 3.
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;: 'l 4. Special Cases and Examples

()
QQ"Q
.':‘!."' In this section we consider special cases and examples of the above
C‘:" gt theorems.
G
’;',' Example 1. (Kallianpur and Wolpert (1984), Christensen (1985)).

‘
'n:!!: Let ¢Cyp H<p ' be a rigged Hilbert space on which is defined a continuous
;}_y linear operator A: $—+¢ and a strongly continuous semigroup ('1":)':>0 on the
W =
J 3:::: Hilbert space H such that the following conditions hold:
A :-
it i) T bgo t=0.
";.' ii) The restriction Ttltb :$+d is d-continuous for all t =0.
tad
v:‘l
b iii) t=T ¢ is continuous for all ¢« 9.
)
{;
B |§ iv) The generator -L of Tt on H coincides with A on H.
) A semigroup (Tt)t>0 satisfying the above conditions is called compatible
- N
g:j':: with (¢,H,9') or equivalently we say that (¢,H,Tt) is a compatible family. If
Koy

Cl. -r

A" in addition we assume that some power rl> 0 of the resolvent (0l +1L) 1 is a
._~ Hilbert-Schmidt operator, an appropriate countably Hilbertian nuclear space
S -

F{'
R can be constructed in the following manner (see Kallianpur and Wolpert (1984) for
AN L
K .
N details): The later condition on L implies that there is a CONS {Qj}j>l in H
';‘ 9 such that Ld, =X, ¢, j=21 and 0<X <X_<.... Take a=1 and define
NN hi bR 1 2
‘.?
"'I* r 2
R~ <I>={¢>6H:||(I+L)¢HH <o for all re R}
B il

v 2 2

TR ={peH: J (1+1,) r<¢,¢.>H<°° for all re R}.
".-""} j=1 ; )

o
:_{:g Define the inner product <=,*>_on ® by
(R
Ak, " .
nex < > = + r< > & >

O R e

; j=1

g
"w‘r and

0

(A

lolt? = <o,0> .

n;} ) r r
:.Q:‘R
e
PlaYON
s

L4
)
-

)
A
[ )
s .. At ws e @ At A M A e memm A m A ia- e e h e et et At e
A T N S SR O Y L I S A A Rh N R WU AL T R
%‘s\ A W ‘\'h'\." Nt N ey s“'ﬁ"_;x:,\",}\;-.:;x - AT ORI AN -*.'»_xj'.ix‘_\‘_-.':-.“-
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Let @r be the

* |

r-completion of $. We then have

and for r<s H$]|rs ||d>||s and so ¢_c ¢ with ¢ =H. It can be shown that the
canonical injection ¢;:e»®r is Hilbert-Schmidt for p 2r-+rl and that

dc» H<>d' is a rigged Hilbert space. A compatible family (Q,H,Tt) con-
structed in this way is said to be special.

Consider the 9rnstein-Uhlenbeck SDE

-+
d§ AEtdt th

t
(4.1)

€0 =Y
This SDE has been solved by Kallianpur and Wolpert (1984) in the case of a
special compatible family and M is a ¢'-valued process with independent incre-

ments (a ®'-valued martingale) defined through a Poisson random measure,

namely

[ng

(4.2) M (6] = [ [ a¢(x)N(dadxds) ¢ ¢ ¢
t 0 RX

where N(da,dx,dx) is a compensated Poisson random measure with variance
u(dadx)ds for some o-finite u on RxX. The last named authors showed that
when M is as in (4.2) or a ¢'-valued Wiener process, both Mt and the solution
of (4.1) belong to the space D(Kg;¢é) (or C(E&;@&) in the Wiener process case)
where q is independent of t. Recently G. Kallianpur and S. Ramaswamy have
given an example of a ®'-valued Gaussian martingale Xt that does not satisfy
the following condition: There exists p independent of t such that Xt€ ¢;
for all t=20 a.s. The example 1is as follows: Let (@,H,Tt) be a special

compatible family with {¢j}j>l’ {Kj}j>l and r, as above. Define for ¢¢ ¢

£(s,6) = [ (L+2)%0,,0>,

R e

P P T N R I TS e
~ A" y .-,

) LT T e N T
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~

and let (BS)S>O be a real-valued standard Brownian motion. For t 20 and ¢« ¢
define

t

X0 = [f(s,3)dB_.

0
Then Xt,® has a regularization xt[¢] that is a 9'-valued Gaussian martingale
such that there does not exist p > 0 independent of t with Xte ¢; for all t20.
Hence we cannot expect that Theorem 7 applied to M=X will give a solution
lying in C(E&j®;) for p independent of t.

In the case of a compatible family and when Mt is a ¢'-valued martingale,

the SDE (4.1) has been solved by Christensen (1985).

The SDE (4.1) is a special case of the SDE (IV) in Section 3 where At==A

and Pt==0 for all t 20. Then we have the following result.

Theorem 9. Let (®,H,Tt) be a compatible family. Let Y be an Fo-measurable

random variable such that EHyH2 <» for some r,>0 and M= (M) be a ¢'-
T 0 t’ =0

valued right continuous martingale such that E(Mt[¢])2<Oo for all ¢ e ®. Then
the SDE (4.1) has a unique ¢'-valued solution £==(£t)t>0 given by
t
= + .
gt[¢] Y[Tt¢] + éMS[Tt_SA¢]ds M [¢] for all ¢e¢

Moreover & has the following property: For each T>0 there exists pT3>0

such that
FT 1
£. €D([0,T];®' ) a.s.
Pp
and
E( sup Hg ]| ) <o,
0<tsT “Pr

Proof. It follows from Theorem 7 since any compatible family (®,H,Tt) satisfies

assumptions Al-A3 given in the introduction.

The SDE (4.1) is a model used in neurophysiological applications (see

Kallianpur and Wolpert (1984) and Christensen and Kallianpur (1985)). However
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it is important to observe that in this field the kind of perturbations that
occur are more likely to be nonlinear rather than linear. We hope to investi-

gate such problems in future papers.

Example 2. (Adapted from Mitoma (1985)). This example is an instance w.ere
T(s,t), At and Pt can all be defined directly on a countably Hilbert nuclear
space ¢. It was recently considered by Mitoma (1985) in the case when ¢ is
obtained by modifying the space S. TFor the purpose of illustration we here
consider S for which some simplifications are possible. Recall that the topo-
logy of S is given by the Hilbertian norms
(4.3) 16112 = 1 £ a+xhH® 6% w2 azo,

k=0 R

and that this topology is also given by the family of seminorms

(4.4) Helll = Jup sup L+x5%6® )| nzo.
<ks2n xe

For ¢S and t 20 define
%.5) B, @ =1 a6,0%? 6 + B, 0eP @)

where a(x,t) and B(x,t) are uniformly bounded functions satisfying the follow-
ing two properties:

k K ko dS
(i) D a(x,t), D B(x,t) (D = _—E) are continuous and bounded in (x,t)
dx
for all k=20,
D(Z)

a(x,t) and D(Z)B(x,t) are locally e-Holder continuous for some

(i)

0<e<1l and a(x,t), B(x,t) are locally Lipschitz continuous in x.

Theorem 10. Let a(x,t), B(x,t) as above and define At as in (4.5) Let Pt be
any perturbation operator from S to S that satisfies assumption A4(a)-(b).

Then the SDE
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-~ ] ' =
dEt (At-+Pt)gtdt + dwt &0 Y

el ol
TS A,

has an S'-valued solution where wt is an S'-valued Wiener process and Y is an

S'-valued Gaussian random variable.

t:g
:’_‘:' Proof. We have to prove that assumptions of Theorem 3 are satisfied.
N
’ Step 1. We first prove that At satisfies assumption A3(a). Since a(x,t)
¥,
; ! and B(x,t) are Coo in x with bounded derivatives that are continuous in t,
!
3 " for each T> 0 there exist constants Ci= C.(T,n) 1{=1,..., 3 such that for
o '
0<ts<T
. n ) +1 +2
o o 1A W@ =16+ ey lo™ | + ¢y [6 o]
Ly
7y
;.: and therefore from (4.5) for some constant C(n,t) 20
WY
2 2
4.7) A ol|Z < ca,m)||o]| for all ¢e® Osts<T.
high t' ''n n+2
'f-\
‘%]
-ﬁ\ Hence, At :S+S8 is a continuous linear operator in the S-topology.
)
15
e Next, since o(x,t) and B(x,t) have derivatives in x bounded and continu-
___“-:: ous in (x,t), for all k20, ¢ed and xe¢ R (At¢)(k) (x) is continuous in t.
::::‘ Then using (4.6) and the dominated convergence theorem, from (4.3) we have
W that for all n21 and ¢ e S
ol 2 D 2.2
R lag-a0ll” = ) Ja+xHM a0 @ - (o) fax s o
R St k=0R
N s >t
"
"~ for s,t € [0,T]. Then assumption A3(a) is satisfied.
-'; .
=) Step 2. We check conditions A3(b)-(e) in Theorem 3. 1In order to do this we
<
-
o apply the ideas of Mitoma (1985) of using some results in Kunita (1982) but ap-
plying them to the space S (for which some simplifications are possible) in-
:;" stead of the nuclear space considered by Mitoma.
S
S8
'-“:'-‘ Let B= (B(t))t>0 be a one dimensional Brownian motion and N t:(x) be a
) - ’

unique solution of the It6 stochastic differential equation (see Condition

R (1i1))

€ LT T4 ““_.‘”’} .L. T Y Y, O e ‘: ;p Rl oAt NS At \.}‘\.‘ N O A P S Wy AL R

§
.“.~?'n,,*"s,nt R PAR M o W M o N R AR A e e et



N t

: ﬁs,t(x) = x + £a(hs,r(x),r)dB(r) + iB(ﬂs,r(x),r)dr
3 (x) = x xeR.
8,8

g For any ¢ ¢ S define

X (4.8) (T(s,£)9) (x) = E[o(n_  (x))]

we obtain Itd's forward and backward equations for s<t

-

v ®

where the first term of (4.10) is the backward Itd integral and (¢-nr )

(which is well defined since ¢ is bounded). From Kunita (1982) using (iii)

t t
1
(4.9) (1 (0) =9 = i"“”s,r"‘)’r"”( d(n, _(0)aB(x) + Ja oo, o

*

t t
(4.10) o(n, () -0(x) = £a(x,r>v<¢(nr  (x)dB(x) + i(Arq"”r,t)"‘)dr

s

E means composition.
3 Taking expected values in both sides of (4.9) we have
0 t
y (4.11)  (T(s,0)9) (x) -0 Gx) = E(J(A o) (N (x))dr).
. s b4
;E But
1 2.(2) (D)

X (Ar¢)(ﬂs,r(X)) = ia(ns’r(X),r) ¢ (ns,r(X)) + B(ﬂs’r(x,r)) ¢
I~
3 Then from the boundedness of a,8,¢(l) and ¢(2) and Fubini's theorem applied to
’ (4.11) we obtain

t t
, (T(s,8)0) (x) - 6Gx) = [E[A 6(n_ (x))]dr = [T(s,r)(A $) (x)dr.
f s ’ s

Hence, we have the forward equation
(4.12)  S1(s,)0(x) = (1(s,0)A 0 (®) s<t, deS.

Similarly, taking expected values in both sides of (4.10) we have

W A

t
(T(s,t)9) (x) - ¢(x) = Ef(A ¢*n_ ) (x)dr
s »

Wy 3 A%y M LY v )\ 1y Pt bV "NFM' AT
.l ) ﬂl" 2 |‘¢ ‘\. 'i " :Q ?('; () 'ﬂy ;l’&' :"“0 A 1Y NG .: o Wy
RPN SO A R e 10 LRI ) .$ “ .'".'. Wy, .‘".% Wt ‘

(ns,r(x)).
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L}
E v and since ArE(dJ(Wr’t(x)) = E((Ard)'ﬂr’t) (x)), then
L :
: (T(s,)9) (x) = d(x) = [A T(r,0)d(x)dr
‘ {2 s
':h.}
-;2 which gives the backward equation
b, 4
i L d _
” (4.13) ST(s,000 = (A T(5,0)8) () s<t, ¢¢S.
A
: N Hence At is the generator of a two parameter semigroup and satisfies assump-
oy
o tion A3(b).
Y Next from Lemma 2.3 in Kunita (1982), for n20 and s,t e [0,T]
L7
Oy - -~
ot (4.14) L+ I, 0 [HT < k@na +xH
)
B Hence for all s,te [0,T] and 0<k<n ;
'.{" 1
- 2, n+l |
= n
::'f 2 (1+ Iﬂ ( )9 |
s elo™n_ ) |* = £ > n+lld>(k)(n LG [} |
: s> (a+in &9 s>
s,t i
R ;
= < E( ! ECL+ | H2E W (o) |
E' (l+|ﬂ ( )IZ 2n+1 s,t s,t
o < Ko D35y 1015 ()
«;2 (1+x7)
’.(-* 1.e.
(k) |”¢|”2(n+l)
I -
" (4.15) E|¢ (n (x))| < X(n,T) R (0,1}, k=0,..., n. 1
':. (1+x7) |
S
~$ Hence, using (4.15) 1
*-- 2 ¢ 2y 2
3 T(s, ))<= § fa+ Ep(n_ . (x))]%dx
. n s, t
. k=0 R
v“:
Lo 2 2y 2051 (k) ? 1
: s 1 L ashPee® e oo lax s k@D ol e, Z [ 7 dx <
s k=0 R st OR (1+x)
b2 2 2
‘N .
i\ s ||T(s,t)(1>||n < C(n,T) |”¢|“2(n+l) s,te [0,T].
oot

"l
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Then from the last expression we have that T(s,t) satisfies assumptions A3(c)

and A3(f).
Next from Theorem 2.1 in Kunita (1982) g t(x) is continuous in (s,t,x).
b

Then since $ has continuous derivatives, applying dominated convergence theorem

twice  together with (4.15) if t+t_ and 0<s< ty < T, $¢ S we have

0
a
ITCs,s - T(s,e)0ll2 = T [ @+ E6™ (- 6™, | ) ax
k=0 R = *"0
+ 0.

Hence T(s,t) satisfies A3(d) and similarly satisfies A3(e).
Moreover, using again (4.15) and a similar argument to that used in obtain-

ing (4.15) we have

1+ [n,  [5H"
E{ - 2 nld)
(l+|ns,t(x)|

(k)

2 22
elo ™ (n, )| (n, (DD

1 2,20, (k) 2
< E( YEL+ |n_ )] (n. )]
(l+lns’t(x),2)2n s,t s,t

2
el

< K(n,t)—~2—~—2—- for all x¢ R and for all s,te [0,T}
a+xH"

s< t.

Hence using (4.4) and the above inequality we have

tes,ooll2 = swp sup@+xH o™ (n, )
0<ksn x¢R >
< K(n,T) H(dﬂHf1 azl, s,te(0,T], T>0

and therefore T(s,t) satisfies assumption A4(c) for the family of seminorms

-

[| 3 n20} given by (4.4).

Then if (Pt) 20

tions A4(a)-(b), by Theorem 3 the SDE

is any perturbation operator on S that satisfies condi-

ARy A s, - AU 2 N o PN NI R RONIONY SRR L;\‘_ R *
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(At t) &tdt dwt
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R has a unique S'-valued solution § = (Et) such that for each T> 0 there exists

m> 0 and

el . C([0,T15S!) a.s.

oo EC sup ||
X -;‘Q 0<t<T °
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Example 3. (Hitsuda-Mitoma (1985), Mitoma (1985)). This example has been
considered by Hitsuda and Mitoma (1985) and Mitoma (1985) in connection with
central limit theorems for propagation of chaos (see McKean (1967)).
Let
2
crexp(-1/(1-|x]|°)) |x|<1

p(x) = {0 Il 21

where ¢ is such that fmo(x)dx = 1. Let
p(x) = fe O(x u)du
R
and 8(x) = 1/y(x). Let S be the space of rapidly decreasing functions and
define
(4.16) ¢ = {o(x) =06(x)f(x) : feS}.
For ¢ ¢ 9 (d(x) =08(x)f(x)) define the following Hilbertian and non-Hilbertian

seminorms on ¢

n k
(4.17) ol = T Ja+x)? 4t | Pax
k=0 R dx
2.n dk
(4.18) lollf = sup sup (L+x)7[“Lf()]
O<ksn x¢R dx

n =0} is
n
a countably Hilbertian nuclear space.

Next let a(x,y) and b(x,y) be bounded ¢”-functions in (x,y) and define

(4.19) alx,t) = [ a(x,y)u(dy,t)
R
(4.20) B(x,t) = [ b(x,y)u(dy,t)

R
where u(dx,t) is the probability distribution of the solution X(t) of the

real valued SDE

(4.21) dX(t) = O.(X(t),t)dBt + B(X(t),t)dt, X0=0
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:::S‘:.: where Bt is a one dimensional Brownian motion and 0 is a real valued r.v. in-
‘!"t 2

:&ff:;, dependent of (Bt) such that E(ecOO ) <= for some c0>0. McKean (1967) has
-."i shown that the measure u(t) has a density u(x,t) and that a(x,t), B(x,t) and
e ®

H{";- u(x,t) are C -functions in ]RXIR+.

z‘,,:u‘

K Theorem 11. Let a(x,y), b(x,y), a(x,t) and 3(x,t) be as above and define for
,ﬁ% ded (d(x) =9(x)f(x) feS) and £ 20

K)

2, 4%

RN (2) (1)

e (4.22) (A ) (x) = —a(x 9% P ) + 8,00 0

l:.'.l t

6%

fat; 2 — (l) (2) ,

*f;; (4.23) (2 $)(x) = ﬁ{b(y,x)¢ (Yuldy,t) + ﬁ{a(y,c>a(y,x)¢ (y)u(dy,t).
B3/

Then the SDE

A G
AT

Db Gt
[ S

& = +P )'E dt + =
de, (At t) £t v g, =
L
N has a unique ¢'-valued solution, where wt is a ¢'-valued Wiener process in-
b
N dependent of the ¢'-valued Gaussian random variable Y.
" Proof. We have to show that assumptions Al-A4 of Theorem 3 are satisfied.
..‘ ‘
j‘ "\':: Conditions Al-A3 are shown in a similar way as in Example 2 (see Mitoma (19853)).
.-'(A'
-,“*
.\_‘: It remains to show that the perturbation operator given by (4.23) satisfies

assumptions A4(a)-(c).
n Let T>0 and for 0<t<T define

K2 g, = [ b(y,x0D

R

(y)u(dy,t)

and

T h, () = [ aly,xaly, 6P (Duay, o).
o R

Then from (4.18) for 0<t<T and n20

k
ol (4.24) ”lgt“ln = sup sup (l+x2)n|-g—kw(x)gt(x)l.
0<ksn xeR dx
E

Using Leibnitz formula and the definition of gt(x) we have
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k k ok k-j k FLOS!
Lyes, 00 = 1 Lo s, 00 5 1 [ St e mue.o.
dx j=0 dx dx j=0 R dx’ dx

Next, using the fact that b(x,y) is a uniformly bounded function in Cm we obtain

that for a constant K1=Kl(n)

k k j
sup (L+x 1 ov0 g 0] sk 1 osup @+ Eypool [ oW ludy,o.
xeR dx 3=0 <eR dx? R

n
But pe S since for each n21 "d—aw(x)l < C(n)e—!xl. Thus
dx

b
sup (l+x2)n|-d—:lrw(x)| < Mn j=0,..., n
xe R dx
and hence

(6.25) lle o lll, < &y 16 ) utay, o).
R

Next since 3(y) =0(y)f(y),

o (1) e 1 1em ] + o 1 1EP o).

A

(y))

But for each n20

IA

16(™ (5| NneM yeR

and by (4.18)

2
a+yHEm] < (lolll, yewr
and
(1)

a+yH e o) < lllolll, vem.

Then
6Pl < c el

and from (4.24) we have

e Ml s &y llall, fel?lance,ap.
R
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. 2
: Finally since E[eco0 ] <= for some constant CO’ using Theorem 5.7.2 in

Kallianpur (1980) we have

'{ (4.26) f e’yldu(t,dy) < KT for 0<t<T.
;: R
y Then .
;" .
<

) el < &, llofl, osest |
k)
;. and in a very similar way one shows that

4

: e il sk lllofil, osest.

‘ Hence for each n21 and 0<t<T

[ §

(6.2) lle sl < kol

«

' and Pt satisfies assumption A4(a).

; Next from (4.23) since a(x,y) and b(x,y) are uniformly bounded Cm—

3 functions in (x,y), from (4.26) we have that for t,toe [0,T]

k

; 12, 9%00 - @@ ] 5 1] Lobiy,06™D (1) iy, 0) ~uty,e )yl

- ]Rax ‘
i

D

| ok (2)

+ | == (7,x)¢0" " (y) (aly,t)u(t,y) -aly,t July,t Ndy|
k 0 0

. R 3x

) < Ko (01 [ &7 |uly,0) -uly,tp) ldy

5 R

+ [ & la(y,uly,t) -aly,t uly,t,) |dy.

b 0 0

Y R

] Also as in the proof of (4.25) we have

4 2.n dk

¥ C3 = sup sup (1 + x) —-Ew(x)l <o | )
' 0<ksn xeR dx

Ny Hence, using (4.18) and Leibnitz formula

k
' e o® - @ 0@l = swp sup @+ Epveae0 @ - 0" )
t *o " 0<ksn xeR dx 0
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k
¢, LR [ Py, -uly,e)]dy + [ laty,t)uly,t) -aly,t July,t) |dy}
3 .t %5 0 0 0
j=0 R R
which goes to zero as t>tg, thtye [0,T] since a(y,t) and u(t,y) are ¢ -functions

in'R><Hg: Then Pt satisfies assumption A4(b) of Theorem 3. Q.E.D.

This example has been considered by Mitoma (1985) and Hitsuda and Mitoma

. (1985) in connection with the following central limit theorem: Consider the
n-th interacting particle diffusion process Y( )(t)-(Y(l)(t),..., Yﬁn)(t))
given by the SDE

(n) 15 fag® (n) 1 (n) (n)
(t) =0+ ) ]a( (s), Y (s))dB, (s) + = 1 fb(Y (s), Y, (s)ds
"i=10 el

k=1,2,..., n,

where (ok,Bk(t))k>l are independent copies of (0,B(t)). Writing

(n)

U t>0

ne~—n

1
(v) = a

k=1Y (t)

)
(n)
k
(where Gx is the unit mass at x) McKean (1967) has shown that U(n)(t)-ililé'u(t)

where u(t) is the probability distribution of the solution of (4.31). Let

s_(0) = /™ (o) -ue).

Hitsuda and Mitoma (1985) have shown that any limit process £==(£t) of

the measure valued process Sn(') must satisfy the stochastic evolution equation

(4.28) dEt = (Aé*‘Pé)Etdt + th €0='Y

where At and Pt are given by (4.22) and (4.23), St is a 9®'-valued process
and ¢ is the countably Hilbert nuclear space given by (4.16).

Mitoma (1985) has solved the equation (4.28) under the additional hypo-
theses that all the derivatives with respect to x of a(x,t) and B(x,t) are
locally Holder A(n,t)-continuous on T for each n21 and T>0. He considers

(4.28) as
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where the integral means the Riemann integral and his proof requires the

\ extension of Kolmogorov's forward and backward equation to the |

In-comple—

) tion of ¢ for each n2>1. -
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